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A generalized Ewald summation for electric multipoles in periodic arrays is 
presented in the form needed for multipole transformations used in the fast 
multipole method. In the fast multipole method the time-consuming Ewald 
sums are thus eliminated in favor of a simple matrix transformation with almost 
no computational cost. The derivation also applies to traditional electrostatic 
potential calculations in periodic charged systems. A summary computational 
prescription is provided. 
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I. I N T R O D U C T I O N  

The fast multipole method (FMM), as described by Greengard, (~) can be 
used to calculate the energy and forces of particles interacting via coulomb 
or gravitational potentials in a computational time that is linear in the num- 
ber of particles. In a previous paper, we showed that applying the FMM to 
a periodic system requires the electrostatic potential due to infinite periodic 
arrays of multipoles of arbitrary order and gave the result for the simple 
cubic lattice. (2) Here we derive the electrostatic potential of such an array for 
arbitrary periodic (i.e., noncubic) lattices. The special case needed in the 
FMM is summarized in section IV. The mathematics is the same as the 
classic Ewald method that is described in standard texts. (5) A different 
generalization for the FMM transformation equations for periodic systems 
was also developed by Greengard based on a renormalization method. (3) 

We consider a simulation volume with an arbitrary distribution of 
charges (continuous and discrete, but net neutral) and its periodic replica- 
tion to fill space. In applying the FMM one obtains the total electrostatic 
potential due to charge in the simulation volume, to which one must add 
the contribution from the periodic replications that fill space. As part of the 
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FMM procedure, one also gets the multipole expansion of the electrostatic 
potential of the simulation volume about its center. The periodic images of 
the simulation cell each have the same multipole expansion about their 
centers and these may be summed to calculate the effects of the periodic 
boundary conditions. (Near neighbor volumes must be treated explicitly, 
i.e., add the direct contribution and subtract the multipole contribution to 
maintain the precision of the FMM, but that implementation issue is not 
treated here. (2)) 

II. GENERALIZED EWALD FOR A R B I T R A R Y  MULTIPOLE 

The problem reduces to finding the potential of an infinite set of 
multipoles distributed periodically with a lattice defined by a set of three 
primitive translation vectors. In spherical coordinates the electrostatic 
potential of one multipole, with moment M ~ ,  located at the origin is, 

4zrMt,,, Ytm(O, q~) 
V'~(F) - 21 + 1 r -77~ 

(]) 

Here, and throughout, we employ the conventions and units of Jackson. (4) 
If we designate by ~ the variable specifying translations to the lattice 
points, the electrostatic potential in the primitive cell due to a unit strength 
multipole at the origin and all periodic images is 

~t~(7) = E v'~(f+ ~). (2) 
2 ~ 

The sum over infinitely many lattice sites in Eq. 2 is conditionally 
convergent (depends on the method of summation) for 1 = 0, 1 and 2. The 
1= 0 term is absent due to charge neutrality. These particular cases were 
historically the motivation for the Ewald method and a discussion of 
Ewald-Komfeld treatment is available in standard texts, tS) We remark that 
the Ewald method produces a periodic electrostatic potential for Eq. 2, 
whereas direct summation does not give a periodic potential for 1 = 1. We 
will relate the Ewald method to other summation options later in this 
paper. We refer the reader to the works specifically addressing these special 
cases(6. 7) where the effects of altering the summation order or introducing 
various boundary conditions' are discussed. 

The charge density that will give the electrostatic potential in Eq. 1, 
with Mr,,, = 1, is 

r,~(p) 
pt~(F)- r--~i ~(r). (3) 
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The delta function in the charge density of the multipole in Eq. 3 is 
understood to be the limit of a unit area function extending radially an 
infinitesimal distance from the origin. Using the usual spherical harmonic 
expansion of the coulomb potential, 

1 4 n  r t 

Ir- "l = 2 l+  1 r ,+' Ytm(:') Ylm(:), (4) 

it is easily verified that the charge density of Eq. 3 produces the electro- 
static potential of Eq. 1. 

The Ewald method replaces a delta function charge density with a 
delta function plus a normalized Gaussian subtracted and added. The 
particle electrostatic potential then has a short-range part, V~(r-3, based on 
the delta function with the Gaussian subtracted charge density and is used 
to calculate the usual real-space lattice sum. The second Gaussian term 
produces the long-range part, VL(F), which sums to produce a smoother 
total electrostatic potential due to all particles. This is Fourier transformed 
and the resulting sum done in k-space. Both sums converge much more 
rapidly than either a real-space or k-space sum alone. 

A. Short-Range Ewald Potential 

The short-range potential, vim(7), Of the unit multipole at the origin is 
developed using the Ewald procedure with Gaussian to cancel the delta 
function, 

V~sm(r)= f d3r' d3r" l [ r' F" 
I t -  - ) 

- exp(--oc 2 IF'-- F"[ 2) Ptm(F"). (5) 

The long-range potential, vtmlF) is the negative of this without the 
L ~, /~  

83(F' - F") term. 
Since our charge density is so simple, it is convenient to do the f'" 

integral in Eq. 5 first. The Gaussian is first expanded as 

exp( - o~ 2 IF' - F"I 2) = exp( - 0~2( r' 2 + r" 2)) 4zr 

x y'iS',( 2  i,"r ') * * :" -- Ytm(r ) Yl,,,( ). (6) 
lm 
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Because our ptm(F") contains O(r"), the integral depends on the behavior of 
the Bessel function around the origin. Integrating over ~'" gives the effective 
short-range charge density, 

ytm(p, ) [ O(r') 3/2 exp( - oc2r ' 2) (2~ t4n: ] 
( 2 / + i ~ J "  

The remaining integration in Eq. 5 is performed using the expansion 
for the coulomb potential, Eq. 4, to give the real-space Ewald interaction 

4n Ytm(P) ( 1 
21 + 1 r (tT~ ~) 

[ 4n (_~)3/2 
x 1-(21+1)!!  

2toc 2t dr' r '(2t + 2) exp( -0c2r '2) 

- r t  (214--------~n(~---~)3/22t~176 1)!! (7) 

The first integral can be expressed in terms of error functions. 
Defining, 

I t(x)  = dy y 2t+2 exp( - y2), (8) 

permits development of a recursion relation by integration by parts, 

21 + 1 X 21 + 1 
It(x)= 2 I t - l ( x ) +  2 exp(--x2)' 

with Io(X) = ~/'~/4 erfc(x) + x/2 exp(-x2), where erfc is the complimentary 
error function. 

The short-range Ewald potential, Eq. 5, for the lm-th multipole 
simplifies to 

l m  = +2 + / V s (r-') 4n Ytm(P) 2 t {It(ocr) oc 2t 'r t 
21+ 1 x/~ (21 + 1)tt \ ~7~r 2 exp(-oc2r 2)  . (9) 

This must be summed over all the lattice to obtain the total short-range 
contribution to the electrostatic potential, 

l m  ..* r (r)=~ Vtsm(r+ T), (I0) 
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B. Long-Range Ewald Potential 

The long-range potential, Zm -- Vr. (r), of the multipole at the origin comes 
from the compensating Gaussian charge distribution. (The negative Eq. 5 
without the 53(7 ' -g"  term.) This long-range interaction is treated using 
the standard Ewald approach by expanding the total long-range potential, 

Zm --, ~L (r), as a Fourier series in reciprocal space, 

,m- ( ) ~L (r)= Z vtLm( 7+ f') = Z' q ~ l m e i G ' r  c - (11) 

The accent above the sum over reciprocal lattice vectors, G, indicates omis- 
sion of the constant term contributed by 67 = 0. The constant term has been 
explicitly omitted because a constant potential does not alter the energy of 
a neutral system. We follow the usual convention of defining the Ewald 
potential as a method that yields a periodic solution to Poisson's equation 
with this constant term set to zero. The lattice sum in Eq. 11 is condi- 
tionally convergent for 1 = 1, 2 just as in Eq. 2. These convergence issues for 
/=  1, 2 are well understood (6' 7) as is the relationship between definitions 
which produce a periodic Ewald potential and nonperiodic definitions 
based on various methods of direct summation of the coulomb interactions. 

The integrals needed to evaluate the Fourier coefficients, ~b~', above 
are facilitated by the use of the convolution theorem. The Fourier trans- 
form of the charge density,/~tm(k-'), may be calculated from Eq. 3 with the 
plane wave spherical harmonic expansion used in Eq. 6, 

fit,.(~) = I d3r e x p ( -  i/~. f) Ptm(f) = 4zr Yt,,,(/~) 
( - i k )  ~ 

(21+ 1 )!! 

The reciprocal-space expansion is then, 

G 2'~ Ytm(d) (--iG)' 
- -  ) e i d ' r  (12) C/re(F) = (4n:)Zvc Z'e, exp ~ G 2 (2l + 1)').. ' 

where (~ represents the angular coordinates of t7 in the original coordinate 
system of the simulation volume. Vc is the volume of the real-space 
primitive cell. The reader should observe that for l>  2, the (7= 0 term in 
Eq. 12 would be well defined, but is indeterminant for 1 = 2 reflecting the 
fact that the constant potential for a sum of quadrupole interactions is a 
finite value, but depends on the summation method. The undefined nature 
of the constant term for 1 = 1 reflects the lack of a periodic result when 
direct summation is applied to dipole lattices. (6) The omission of the 
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constant remains correct for a neutral system. We also point out that the 
constant only arises from the long-range contributions from the electrostatic 
potential and thus can not depend on the Gaussian width parameter 0r 

The long-range contribution, tm ~ r  (F), is to be added to the real-space 
sum, to yield the total electrostatic potential at a point F in the primitive 
cell. The sum of Eqs. 10 and 11 provides the desired generalization of the 
Ewald procedure for producing a periodic electrostatic potential due to an 
array of multipoles in a general Bravais lattice, 

~lm(F) -- s  ~ldmeiG"~'"4;" s vim(r+ :). (13) 

Defining / ~ r = F +  7 ~. the generalized Ewald potential can be explicitly 
written, 

2t + 4 x/~ s (It__(~xR ot 2t+ 'RtT exp( _ otZR~. ) 
(2t + iii27+ 1)!, Ylmfi~T) ~ R{I~ ~)- 2 

~lm( 7) - , , - ,  

/ 
�9 7~ (G2)Ytm(~)(-iG)teiO'e (14) 

+ Vc o(4zt)22'exp -~--5 G'- (2l+1)!'. " 

This result will be employed to simplify transformations needed in the 
FMM for periodic systems. 

III. GENERALIZED EWALD FOR THE FAST 
M ULTIPOLE M E T H O D .  

Because the FMM calculates the multipole moments of the charge in 
the simulation volume as a matter of course, there is a particular economy 
possible in summing the electrostatic potential due to the infinite array of 
periodic image volumes. The FMM requires the electrostatic potential in 
the simulation cell due to all images expressed as a local moment expan- 
sion in spherical harmonics, 

~'(F) =4n  y' LtmrtYtm(O, ~). (15) 
Lm 

Again, the accent on the potential indicates omission of charges in the 
simulation cell. The FMM also provides the transformation equations (1'21 
necessary to calculate the local moments, Lzm, about the origin due to a 
multipole moment expansion of an image cell centered at a translation 
vector 7,, 

LI Iml = s LM Trim, '/2m2(rt) Mt2m 2, ( 1 6 t  

l 2 , m 2 
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where the upper limit on the sum in a practical calculation t2~ is typically 
12 = 16 or 32. The transformation matrix is given by 

with 

LM LM 
Tt, mr,/2m2 (rt) = t it. m,, ! 2, m 2 

Y~l +12, mt--m2 (P') 
rtt t +~2+ l 

(17) 

LM tit, m I �9 /2' m 2  - -  

( - -  1)t:+m2 ~ 

~/(21, + 1 )(212 + 1 )(21, + 212 +1 ) 

/ [ ! 1  + 12 + ml--m2)l (ll + 1 2 - - m l  + m2)! 
x X](II +ml i i  O~--m~)! (12 + m ~ i  i/2--m~)!' 

The economy of the treatment of periodic boundary conditions within 
the FMM is based on recognizing that the sum of all periodic images 
needed for the local potential is, through Eq. 16, the sum of transformation 
matrices for each periodic image cell since the multipole moments are the 
same for every cell. While the multipole moments of the simulation 
may change in the course of a calculation, the transformation matrix for 
calculating the electrostatic potential due to all periodic images requires the 
summation of Eq. 17 only once for the specific Bravais lattice employed. 
Even in simulation methods which change the lattice constants during the 
simulation, such as in the study of crystal structure transformation, ~8~ the 
computational cost of recalculating the transformation matrix is constant 
independent of particle number with a fixed maximum multipole order and 
the total cost is very small compared to the energy and force calculation. 

A. Relation Between Transformation Sums and 
Real-Space Sums 

The transformation matrix sums in the FMM require, after relabeling 
indices in Eq. 17, the sum 

~ ,  4n Ytm(f,) 
t+l " (18) 

r 21+1 r t 

This sum is identical to the electrostatic potential at the origin due to the 
periodic array of multipoles (excluding the multipole at the origin). The 
transformation matrix sum needed in Eq. 18 must then have the same 
convergence characteristics as the electrostatic potential sum in Eq. 2. For 
1= 1,2 the sum in Eq. 18 is conditionally convergent and absolutely 
convergent for 1 > 2, while the monopole sum, 1 = 0, is not included for a 
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neutral cell. (These characteristics are also shared with the lattice sum of 
Eq. 11.) 

Typical choices for the method of summation of Eq. 2, and hence 
Eq. 18, are the Ewald sum described in Sect. II and summation over 
spherical shells, where all translation vectors with magnitude less than the 
radius R of a sphere are summed and then the sphere radius is allowed to 
go to infinity. Alternatives include ellipsoidal shells or slab-shaped volumes 
as reviewed by Smith. (6) The Ewald sum of Eq. 2 produces a periodic 
electrostatic potential where spherical or other direct-space sums generally 
produce nonperiodic results which depend on the shape of the region 
defining the sum. 

In ref. 2, we showed that for a cubic lattice, carrying out the summa- 
tions for the transformation matrices, Eq. 17, using the Ewald method 
produces an electrostatic potential that is equivalent to doing the direct 
summation of the electrostatic potential, Eq. 2, with spherical shells. We 
then quoted the standard result (7) for converting a spherical shell sum to 
a periodic Ewald sum in real space. We generalize here the connection 
between transformation sums and the resulting real-space electrostatic 
potential for noncubic lattices. 

B. Ewald Sums of the Transformation Matrices 

Calculating the energy by using the fast multipole method with the 
transformation sums calculated using our Ewald technique is not the same 
as calculating using the Ewald technique for the electrostatic potential. The 
source of the difference can be identified by considering the convergence of 
the transformation sums. Because our simulation cell is always taken to be 
neutral there is no monopole moment term entering the transformation 
Eq. 17. Further, an overall constant added to the electrostatic potential 
does not change the energy of a neutral system, therefore contributions 
from any multipole to the L0o local moment in Eq. 17 can be ignored. This 
eliminates the need to calculate the transformation sum in Eq. 17 for 11 = 0 
or 12 =0. Since the transformation sum, Eq. 18, has 1= 11 + 12, only 1= 2 
and higher sums are needed. Since the sum is absolutely convergent for 
1 > 2, it is only the 1 = 2 term in the sum of transformation matrices that is 
affected by the summation method. Specifically, the method of summation 

' ~  transformation is only relevant for the 1~,= 12 = 1 sum, or-the T~.m~, ~.m2 
matrix, which is used in Eq. 17 to calculate the L~,m~ local moment. 

Our analysis above leads us to understand that the linear term in the 
electrostatic potential in the simulation cell depends on the summation 
method applied to the FMM transformation matrices to calculate the elec- 
trostatic potential due to the dipole moments in the infinite periodic array 
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of image cells. This linear term, a uniform electric field, is well known (6) 
from analysis of direct sums of the coulomb interaction, Eq. 2, where it 
arises due to dependence on summation method of the 1 = 1 term. (While 
direct sums of Eq. 2 also include dependence of summation method on the 
1 = 2 terms, the result is a method-dependent constant electrostatic poten- 
tial without physical consequence.) In the F M M  the constant electric field 
arises due to the dependence of the transformation matrix on summation 
method of the 1 = 2 term in Eq. 18. Because the energetics and dynamics of 
the particles in the simulation cell are affected by this electric field, it is 
necessary to identify its origin. Because the electric field is determined 
entirely from dipole moments, we consider now a periodic array of 1 = 1 
multipoles. 

C. Periodic Array of Dipoles 

We will now establish the specific relationship between the Ewald 
potential constructed directly, as in Sect. II, and the electrostatic potential 
of the periodic system constructed via the FMM. We will provide a 
prescription for converting between the two results when the F MM 
summation of the transformation matrices is done using Ewald sums. From 
our discussion above, we need explicitly calculate only the linear term of 
the local moment expansion using both methods for a dipole array with 
dipoles of strength M~,, at every lattice point. 

Since our interest is only in the constant electric field, it suffices to 
calculate the local expansion to linear terms in r. Identifying the resulting 
local moments as L~e,, and ...~,,rFMM for the two expansion respectively, we 
may write, following Eq. 15, to first order in r, 

r =4re Z L~.,,rY,,,,,(O, r  CE + - - -  
tTrl r 

r = 4ZC ~ L FMM Y~..,(O, ok)+ CFMM+ l m '  r �9 �9 �9 

m t 

(19) 

(20) 

Here, Ce and CFMM are two constants which are not of interest. The higher 
order terms, according to our arguments above, are the same in both cases. 

Because the Ewald sum, Eq. 13, is independent of the Gaussian width 
parameter , ,  it is most convenient to employ the large , limit (narrow 
Gaussians) in calculating the linear terms in the electrostatic potentials 
above. With ~ approaching infinity, we may neglect all terms in the short- 
range part of the Ewald sum except the term in the simulation cell itself. 
In the reciprocal part, we must sum all reciprocal lattice vectors. The 

8 2 2 / 8 9 / 1 - 2 - 2 8  
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short-range part of the Ewald sum, Eq. 9, contains only tm -. Vs (r)- Substi- 
tuting the small argument expansion of It(ocr) from Eq. 8, 

(21+ 1)vv 
"" + 0 ( ( 0 ~ r ) 2 1 + 3 ) ,  (21) II(~ = 2 t 4 

yields the short-range potential for small r in the form which we will need 
below, 

z,~-. 4n yt.,(p)( 1 _ 2oc2t+lr I ) 
Vs(r)=21+ 1 r ~1 x /~(21+ 1)!! Jt 'O(~ (22) 

We first evaluate the linear terms in the FMM potential using the 
local moment definition, Eq. 16, summed over all translation vectors except 
the origin, 

L F M M  Z t L M  
l ,m'  ---- T l ,  m', l ,m(r ' t )  M l ,  m " 

From Eq. 17, the dipole--dipole transformation matrix is a sum of 1= 2 
terms, 

A - - F M M  L M  (~' 41t 
3 q ' n L  1, m'  - -  5 M l ' m l l ' m "  l ' m  5 r t (23) 

This sum is conditionally convergent. It will be done with the Ewald 
method and, apart from the bare quadrupole term at the origin, is given by 
the complex conjugate of the 1 = 2 sum in Eq. 13, evaluated at the origin. 
Since we are working in the narrow Gaussian limit, we retain only the 
simulation cell term, Eq. 22, in the direct space sum and Eq. 13 produces 

r m' -- m( r-~ ---~ V 2" m' -- m( ~) "4" Z t  ~ 2~ m' --m e,C , (24) 

For small r, Eq. 21, shows that v2'm'-m(~ ") contributes only the pure quad- 
rupole which is to be subtracted out as the-term corresponding to 2V= 0, 

lira ( r m'- re(F) -- V~" m'- m(F) ) 
r-*O 

(4n)2 --'  exp -~- '2  G 2 5vv 
V c  d "" 
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The complex conjugate of this result is the term in parentheses in Eq. 23 
which was needed for ~'rMM in Eq. 20. The linear term in the electrostatic 
potential due to all image dipoles is then 

4 ~  ~ Legglm' r r,m,(O, (/)) 
m' 

( G2) (4zr) 2 ~ '  LM e x p -  r*  ,,,(0). 
"-- - - M I . M  "3V c E rrlm'(O,  ~) tl .m'.l .m ~ 2. m'-- 

m' (~ 
(25) 

For the direct Ewald potential, ~ - ,  we must subtract out the bare 
dipole from the short-range part of Eq. 9 with 1 = 1. For large 0c this follows 
from Eq. 22, 

t~lm(F ) lm -. 4ZC rlm(~) ( 1 
�9 = V s (r) =-~- Mira ;2 3 ~/~,] + O(~ 

The long-range part of r Eq. 12 for l = 1, can be expanded for small r to 

( G2) (4zc)2 E '  exp --~-~2 
= + "vc 

Mlm Ylm( ~) ( - iG) ( iGr 4~z ) 
G 2 3 -if" E Y*m(d) Y,m(e) q- ... 

m ~ 

The product Y I m ( ~ )  Y*m,(~), can be written as a linear combination of 
1 = 0 and 1 = 2 spherical harmonics. The 1 = 2 terms can be written in terms 
of the transformation matrix with 1, + 12 = 2. Using the notation of Eq. 17, 
the reciprocal lattice sum becomes 

t~m(F)"-~ + M l m V'c ~ e x p ( - ~  -5) 
lm(0) (4/r)2 E '  G2 

m' G 

I I~m. tyl e 
x 9 

LM ] 
tl, m', l,m , m(d)  rYlm,(~)" ~ - -  3 Y2, m'-  

Extracting the linear terms from the sum, ~ l m - .  s (r) + r and 
comparing to our definition of r in Eq. 19, yields our result, 
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47t E Lfm, rYlm,(O, ~) 
m s 

4~ 
g l  rim(P) ( 

40c3r 
~" - - T  m \ 3%//~ ] 

(4rc)2 2 '  exp -~7~2 
+ Mlm 9vc  o 

( G 2 )  tzm 
1, m', 1, m , m ( d )  r Y~m'(  e). -- MIm (4~)2 Z.,/_,' exp - - ~ 2  3 Y2, m'- 

V C  .m' d 
(26) 

The difference in the linear terms of ~ and ~ - ~ ,  Eqs. 25 and 26, 
yields 

�9 ~(~') - ~%MM(r) 

= MlmrY, m(P) ( (47t)2 ( G2 ) 1-~ 
9 v c E e X p  - ~ - i  - - - x / ~ ~  

3 (4~)3~ 
9V-ffcJ' (27) 

plus a constant. Since there is no singularity at G=0,  we included the 
G = 0  term in the sum and subtracted it out explicitly. The sum can be 
converted to an integral with an error given by the Euler-Maclaurin 
summation formula that goes to zero as a gets large, 

(4/~) 3 
~ - c  ~ exp ( - 4 ~ 2 )  = ~  x/~ ~ (28) 

The sum exactly cancels the short-range contribution that also diverged 
like 0c 3. Generalizing to arbitrary dipole moments yields, 

(4-!3 
~b'E(Y) -- ~'FMM(f') = -- 9 Vc r ~ Ylm(r) g lm.  

m 
(29) 

The difference between the two methods of determining the potential, 
Eq. 29, is a constant electric field proportional in magnitude and parallel in 
direction with the dipoles on the lattice. Thus, if the total dipole moment 
of the charge in the simulation volume is/5, then the electrostatic potential 
of the FMM gives the usual  (7) extra energy, 

PEewald = P E  fmm - cV--3 D . D .  ( 3 0 )  
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As described by Smith, ~6) this is indeed the extra field that results from 
summing all interaction by spherical shells. We confirm our initial asser- 
tion, the calculation of the electrostatic potential using the Ewald sums for 
the transformation matrices produces a potential in the simulation cell that 
is the same as having directly calculated the conditionally convergent elec- 
trostatic potential, Eq. 2, by summing over spherical shells. To obtain the 
periodic Ewald potential one must subtract the constant electric field as 
specified by Eq. 29. If any method of summing transformation matrices 
other than the Ewald method had been employed to carry out the condi- 
tionally convergent sum of Eq. 23, then the value of the sum would change 
by a constant. That constant would alter the coefficient of the electric field 
in the simulation volume and accordingly alter the difference between the 
periodic Ewald potential and the FMM potential, Eq. 29, in the simulation 
volume. 

IV. SUM MARY 

Our principle result is an explicit procedure for calculating the infinite 
sum of transformation matrices, Eq. 17, needed to employ the FMM in a 
system with the periodicity of an arbitrary Bravais lattice; Having derived 
the generalization of the Ewald sum for the electrostatic potential due to a 
periodic array of multipoles, Eq. 14, the summation needed for the trans- 
formation matrices given in Eq. 18, can be carried out using the same 
Ewald summation formula and evaluating the result at the origin after 
removing the multipole field at the origin. To be specific, let d~, ~2, d3, be 
the three translation vectors defining the period system and let g~, g2, g3, 
be the three reciprocal lattice vectors such that gi .d j=2n Ou" Then 
defining, (~kjp = kgl + Jg2 + Pg3 and Rstu--sal -[" ta2 di- ua3, the Ewald sum 
can be explicitly written, 

4n Yt,,(/~stu)= ~t,,,(0 ) 
E 21+1 Rlst +1 s,t,u~O,O,O 

21+4 ~'~ Z 
(2l + 1)(2l + 1)!w �9 s,t,u~O,O,O 

f I l(  ocRstu) 
Ylm(Rstu) ~ 1  -- 

\ R~t. 

0c2l + 1 1 2 2 / 
2 Rstu exp(--~ Rstu) 

(4n):Vc (21+1 1)!! k,j. ~o .  0,o exp 4au j Yt,,,(t~kSp)( -- iGkjp) t--: (31 ) 

When employing Eq. 31 in calculating Ewald sums of transformation 
matrices, the resulting electrostatic potential is not periodic. To obtain the 
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periodic Ewald electrostatic potential, Eq. 29 is used to remove the constant 
electric field. 

Finally, we observe that the use of the generalized Ewald sum, Eq. 14, 
does not necessarily require the full FMM apparatus. It seems likely that for 
small or inhomogeneous systems hybrid methods for evaluating the elec- 
trostatic potential may prove efficient. One could employ direct, O(N2), 
evaluation of coulomb interactions and use the Ewald potential in terms of 
multipole moments to obtain the sum of distant interactions. 
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